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Cerebral fat emboli: A trigger of post-operative delirium✩
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Accumulating evidence implicates cerebral fat embolism (CFE) as a causative agent in post-operative con-
fusion (POC). CFE occurs following orthopaedic procedures including, intra-medullary (IM) nailing and total
joint arthroplasty (TJA). The incidence of CFE is high (59–100% TJA) and the resulting POC is associated with
higher overall complication rates. Cognitive dysfunction improves in many patients but can persist – with
potentially disastrous outcomes. The pathomechanics of CFE implicate circulating lipid micro-emboli (LME)
that are forced from IM depots by instrumentation/nailing. Passage to the left side of the heart is possible
through intra-cardiac or arteriovenous shunts in the lung. LME are propelled to the brain where they cause
disruption via ischemia or by alterations in the blood-brain-barrier – causing cerebral oedema. Prevention
of CFE follows established practices for preventing FES and consideration of additional techniques to remove
resident fat and reduce IM pressures. When CFE occurs supportive treatment should be established.

© 2011 Elsevier Ltd. All rights reserved.

Introduction

Post-operative confusion is common following orthopaedic op-
erations with a recent systemic review finding post-operative
delirium levels of 3.6–28.3% following elective procedures and 4–
53.3% following hip fracture surgery.1 Confusion may be secondary
to systemic dysfunction, as can occur in hypoxia and hypoten-
sion, or be due to neurological pathology.2 One neurological cause
of post-operative confusion that has been highlighted in recent
medical literature is cerebral fat embolism (CFE).3–8

CFE occurs when lipid micro-emboli (LME) are propelled, via
the blood stream, to lodge in the brain. It was first noted as part
of the fat embolism syndrome (FES)9 but has since been shown
to arise in circumstances where the full-blown syndrome is not
evident. It should be noted that although FES syndrome is relatively
rare, fat emboli (FE) are common following fracture.10,11 In addition
to this many orthopaedic procedures have been implicated in
producing FE and causing CFE including, IM nailing of femoral
fractures3 , hip fracture surgery4, total knee replacement (TKR)5,
and cemented/uncemented total hip replacement (THR).6,7,12 The
incidence of this problem is high with 59% to 100% of patients

✩ Work attributed to: Academic Unit, Trauma and Orthopaedic Surgery, Clarendon
Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
* Corresponding author: Professor P.V. Giannoudis BSc, MB, MD, FRCS, Department
of Trauma and Orthopaedics, Academic Unit, Clarendon Wing, Leeds Teaching
Hospitals NHS Trust, Great George Street, Leeds, LS1 3EX, United Kingdom, Tel.:
+44 0113-3922750

E-mail address: pgiannoudi@aol.com (P.V. Giannoudis).

0020-1383/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.

during total joint arthroplasty (TJA) having evidence of cerebral
emboli. In these studies 41% to 75% had a measurable decrease
in their cognitive state in the first post-operative week or at
discharge.5,13 This condition was seen to persist in 18 to 45% of
patients at 3 months.5,14

In the acute setting this reduction in cognitive ability makes
additional impacts on overall patient morbidity and demands
on nursing care.15 Many patients improve after the immediate
post-operative period8 but prolonged neurological compromise
can occur.16,17 Persistent cognitive changes are now known to be
associated with higher three month and first year mortality rates
than those of unaffected patients.2 Post-operative confusion is also
associated with poorer outcomes, higher complication rates and
longer bed occupancy in patients undergoing lower limb TJA.5,8 It is
noted that the elderly have an increased incidence, and decreased
ability to recover from this effect.2

Exact costing of this complication is beyond the scope of this
paper, however, a recent study found average costs per day among
“non-orthopaedic” patients with delirium exceeded 2½ times the
costs among patients without.18 The increased length of admission,
complication rates and levels of nursing care make a significant
impact on the resources of the healthcare provider.

It is thus clear that post-operative cognitive changes of patients
should be of great interest to the treating orthopaedic surgeon
as it may be the harbinger of a disastrous outcome. The roles of
pathomechanics, prevention and treatment of CFE in orthopaedic
patients are incompletely understood and form the subject of this
study.
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The pathomechanics of CFE

The sources of embolic fat have traditionally had two longstand-
ing contending hypotheses when described as part of FES – one
mechanical19 and one biochemical.20 The mechanical theory ex-
plains the observed incidence of fat embolism (FE) following pelvic
and long bone fractures21–23 and during processes that increase
intra-medullary (IM) pressures, including the reaming/nailing of
long bones.24–26 The biochemical theory, with mediation via lipases
releasing free fatty acids27, accounts for the incidence following
non-fracture pathology including soft tissue trauma28,29 , burns30

and pancreatitis.31

Fat passes into the venous system and thus into the right side of
the heart where it is propelled to the lung capillary bed.9,21–23 This
embolization of pulmonary vasculature causes ventilation/perfusion
mismatching.32,33 This, with the possible complication of adult
respiratory distress syndrome (ARDS)34 accounts for the respiratory
compromise that is seen in FES.

Fat is then able to pass into the left side of the heart where
it is embolized to the end organs, including the brain35,36 , skin36

and kidneys.35,36 The mechanism for this occurrence is controver-
sial, with many studies citing a patent foramen ovale (PFO) as
the cause, allowing right to left cardiac shunt.37,38 CFE has how-
ever been found in patients5,13,39–42 and animal models43 without
this abnormality. An explanation for this is the existence of ar-
teriovenous (AV) anastomoses in the lung.44 Several studies have
suggested AV recruitment in exercise45–48 and hypoxia49 , with a
corresponding reduction in shunting in the hyperoxic state.50 In
addition to this, transpulmonary passage of molecules exceeding
diameter of pulmonary capillaries (7–10 μm)51,52 has been shown,
in healthy humans at exercise (radio-labelled, macroaggregated
albumin (45 μm))53 and in cadaveric lungs (microspheres 25
and 50 μm) at physiological pressures.54 Furthermore, it should be
noted that LME are able to deform in shape, allowing access to avail-
able vascular apertures, as is shown at section41 and by video mi-
croscopy (http://www.anesthesia-analgesia.org/cgi/content/full/97/
6/1789/DC1).43 This phenomenon explains the findings of one
study, in dogs, 3-hours post-bilateral hip replacement, where fat
had penetrated the brain, heart and kidney of every canine speci-
men but no 15 μm spheres had accessed the arterial circulation.55

Embolization of the brain causes LME to become lodged in the
capillary bed – with this abnormality sometimes referred to as
small capillary arteriolar dilatations (SCADS), which are seen at
histological sectioning.56–59 This blockage to blood flow may cause
local ischaemia, as is seen with other embolic types of stroke60

and is one possible mechanism for cerebral compromise. Another
proposed mechanism, which has been suggested by animal models,
is that LME alter the permeability of the blood brain barrier (BBB)
causing post-operative cerebral oedema.61,62 An overview of the
pathomechanics of CFE can be seen in Fig. 1.

Investigating LME & CFE

Much of our knowledge of LME follows investigation of patients
who have experienced cardiopulmonary bypass (CPB). CPB has
been shown to be associated with high levels of post-operative
confusion with this effect thought to be secondary to microemboli
to the brain.60,63,64 These microemboli may be of lipid origin from
scavenged “shed blood”35,65–67, or non-lipid from atheromatous
aortic plaques or gaseous bubbles from the CPB machine.68

Real-time measurement of emboli has been established using
transcranial Doppler (TCD) looking for high-intensity transient sig-
nals (HITS). HITS have been shown to positively correlate CFE64,69

and are the chosen method of investigation of many papers.5,14,65,69

The appearance of CFE can also be seen using magnetic resonance
imaging (MRI)70,71 and high-resolution computer topography (CT)

Fig. 1. An overview of the pathomechanics of Cerebral Fat Embolism (CFE).

scanning72 – with MRI being the recommended imaging modality
showing the “starfield pattern” of multiple punctate hyperintensi-
ties on diffusion-weighted (DWI) and T2-weighted imaging.71,73

Preventing & treating CFE

Prevention

Attempts to reduce the production of FE have been attempted
ever since recognition of its presence and potential sequelae. Move-
ment of fracture ends has been shown to release showers of fat
emboli74 and this has led to the principle of early stabilization
of long bone fractures – with timing of definitive surgery being
determined by the physiological status of the patient.75 Techniques
have been adapted to try and prevent raised IM pressures during IM
nailing of fractures, including the slow insertion of hollow nails.76

Whether reaming prior to nail insertion increases LME is controver-
sial with a recent review suggesting the evidence is inconclusive.25

Techniques to try and prevent raised IM pressures have been at-
tempted including; distal venting, which may reduce IM pressures
by 50–90%77 and changes in reamer design, including narrower
reamers allowing debris to “flow by”.78 Innovative modifications in
hardware have culminated in the reamer irrigator aspirator (RIA) –
which in addition to reducing IM pressures also removes resident
fat and as such may be of particular use.79–85

Although these methods have been developed for the trauma
patient they have been adapted in elective orthopaedics where
IM instrumentation is necessary. The incidence of HITS is reduced
in cemented THR when a cannula attached to a vacuum has been
placed distal to the femoral prosthesis during cementing.86 A similar
reduction is seen in TKR using computer-assisted surgery (without
IM jig)87 or by using RIA prior to standard IM jig placement.88
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Attempts to reduce LME have not rested with surgical techniques
as it has been shown that a reduction of embolic load can be
achieved when scavenged “shed blood” is passed through a “cell-
saver” prior to infusing the patient.65–67,89 Patients transfused with
processed blood from which micro lipid particles were removed
showed a significant difference (P < 0.038) in cognitive dysfunction
at 6 weeks when compared to those patients that did not receive
cleansed blood.89 An additional study found the relative number
of fat globules circulating in the cerebral vasculature correlated to
a reduction in prefrontal activation assessed by MRI.90 The use of
a mechanical filter in the venous system has been suggested to
reduce the load of emboli during IM nailing in a canine model91 but
is unproven in the clinical setting.

Treatment

The management of FES has traditionally concentrated on pre-
vention and support for the respiratory compromise.92 Attempts to
modify the effect of FES at the lung have included steroids93,94, an-
ticoagulants95,96, ethanol and dextrose97 all of which have dubious
effectiveness. Of the experimental techniques, including anticy-
tokines98, antibodies to adhesion proteins99 and blockade of tissue
factors100 only activated protein C (APC) has been approved for use
in humans.101 APC does increase the risk of haemorrhage and as
such may be of limited use in trauma/orthopaedic surgery.101 The
effect of these interventions on CFE has not been established. What
has been established is that all patients with cerebral pathology
should have adequate perfusion, oxygenation and access to ap-
propriate nursing. This supportive treatment with an emphasis on
prevention should be the focus of management.

Conclusions

CFE is of significance to the orthopaedic surgeon given its
frequency and the increase in overall patient morbidity/mortality
associated with its presence.102–112 Accumulating evidence im-
plicates circulating LME, forced from IM depots, as an agent of
neurological injury. The movement of LME to the left side of the
heart is possible through an intra-cardiac shunt, e.g. a PFO, or via
AV shunts in the lung. Disruption of normal brain activity may
be due in part to ischemia and in part to alterations in the BBB
and resulting cerebral oedema. Preventing CFE follows traditional
guidelines for preventing FES but with consideration of additional
techniques – to remove resident fat or reduce IM pressures before
LME are displaced systemically, causing harm. When CFE occurs
supportive treatment should be established, with keen follow-up to
search for associated complications. CFE, like FES remains a case
where prevention is better than cure.
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